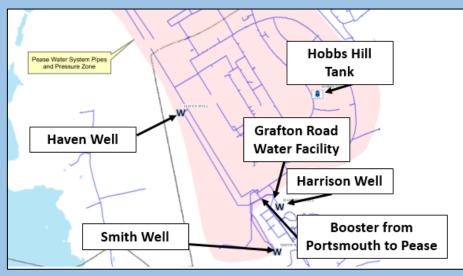

The PFAS-Impacted Pease International Tradeport Water System 10 Year Retrospective (The Water System's Story)

City of Portsmouth
June 2024 Safe Water Advisory Group

2014


A Little Background:

- PFAS Regulatory Timeline
- Other Contaminated Sites

Pease Tradeport Water System in 2014...

Haven Well

Installed in 1875 at Haven Springs

Served Pease Air Base: 1956 to 1992

PDA/Portsmouth: 1992 to 2014

500 GPM Pump

Pease Air Base Closure - Superfund

- Eleven Record of Decisions (ROD) representing all the major Superfund cleanup decisions were completed between 1993 and 1997.
- All remedial design and construction activities for the Base have also been completed.
- Haven Well had an extensive monthly monitoring program to track any potential contaminants nearing the well.

Haven Well Water Quality August 2013

NH DPHS PHL WATER ANALYSIS LAB

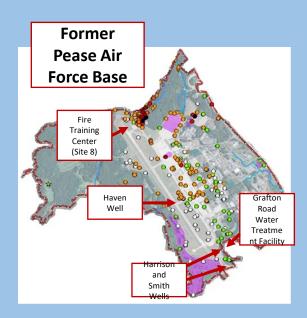
29 HAZEN DR CONCORD NH 03302 Phone: (603) 271-2994 Fax: (603) 271-2997

ANALYTICAL RESULTS

Batch ID/Form: A305509 - CHEMICAL MONITORING

PWS ID/Name: 1951020 - PEASE TRADE PORT - PORTSMOUTH

Submitting Lab ID: 3000


Report Date: 08/08/2013

Water Quality
Met all Drinking
Water Standards
All Non Detects
"ND"

ľ	Analytical Nothest 594.1												Stat Mothers: 525.2	
			1,3,5-TRICHLOROBENZENE	ND		ND	T-BUTANOL (TBA)	ND	4,4'-DDD	ND	DIETHYL PHTHALATE	ND	NS-NONACHLOR	ND
	1,2-DIBROMO-3- CHLOROPROPANE	ND	1,3,5-TRIMETHYLBENZENE	ND	CHLOROMETHANE	ND	T-BUTYLBENZENE	ND	4,4'-DDE	ND	DIMETHYL PHTHALATE	ND	RIFLURALIN (TREFLAN)	ND
	1,2-DIBROMOETHANE(EDB)	ND	1,3-DICHLOROBENZENE	ND	CIS-1,2-DICHLOROETHENE	ND	TETRACHLOROETHENE	ND	4,4'-ODT	ND	ENDRIN	NE	rar coroner (raer e-e)	1.2
	Analysical Method: 585		1,3-DICHLOROPROPANE	ND	CIS-1,3-DICHLOROPROPENE	ND	TETRA-YOROFURAN(THF)	ND	ACENAPHTHENE	ND	ENDRIN ALDEHYDE	1	Analytical Hothod: 531.2	
	CHLORDANE	ND	1,4-DICHLOROBENZENE	ND	DIBROMOCHLOROMETHANE	ND	TOLUENE	ND	ACENAPHTHYLENE	ND	FLUORANTHENE		3-HYDROXY-CARBOFURAN	ND
	TOXAPHENE	ND ND	2.2-DICHLOROPROPANE	ND	DIBROMOMETHANE	ND	TOTAL XYLENES	ND	ALACHLOR	ND	FLUORENE		ALDICARB	ND
	TOWATTENE	ND	2-BUTANONE(MEK)	ND	DICHLORODIFLUOROMETHAN	ND	TRANS-1,2-DICHLOROETHENE	ND	ALDRIN	ND	GAMMA-CHLORDANE	ND	ALDICARB SULFONE	ND
	Analytical Hothod: 524.2		2-CHLOROTOLUENE	ND	DIETHYLETHER	ND	TRANS-1.3-	ND	ALPHA-CHLORDANE	ND	HEPTACHLOR	ND	ALDICARB SULFOXIDE	ND
		ND	2-HEXANONE	ND	DIISOPROPYL ETHER (DIPE)	ND	DICHLOROPROPENE		ANTHRACENE	ND	HEPTACHLOR EPOXIDE	ND	CARBARYL	ND
	TETRACHLOROETHANE 1.1.1-TRICHLOROETHANE	ND	2-METHOXY-2-	ND	ETHYL-T-BUTYL ETHER	ND	TRICHLOROETHENE	ND	ATRAZINE	ND	HEXACHLOROBENZENE	ND	CARBOFURAN	ND
	1.1.2.2-	ND	METHYLBUTANE(TAME) 4-CHLOROTOLUENE	ND	(ETBE) ETHYLBENZENE	ND	TRICHLOROFLUOROMETHAN E	ND	BENZOVAJANTHRACENE	ND	HEXACHLOROCYCLOPENTADI	ND	METHOMYL	ND
	TETRACHLOROETHANE			ND ND	HEXACHLOROBUTADIENE	ND	VINYL CHLORIDE	ND	BENZOVA/PYRENE	ND	INDENO(1,2,3-CD)PYRENE	ND	OXAMPL	ND
	1,1,2-TRICHLOROETHANE	ND	(MIBIK)	ND	ISOPROPYLBENZENE	ND ND	Analytical Hothor: 525.2			ND.	ISOPHORONE	ND		
	1,1-DICHLOROETHANE	ND	ACETONE	ND	MP-XYLENE	ND ND		LIE.		ND ND	LINDANE	ND	Analytical Hethod: 547	
	1,1-DICHLOROETHENE	ND	BENZENE	ND	MIP-ATLENE	ND	2.2'.3'4.6- PENTACHLOROBIPHENYL	ND	BENZO(G,HJ)PERYLENE		METHOXYCHLOR	ND	GLYPHOSATE	ND
	1,1-DICHLOROPROPENE	ND	BROMOBENZENE	ND	METHYL-T-BUTYLETHER (MTBE)	ND	2,23,34,46HEPTACHLOROBIP HEN	ND		ND	METOLACHLOR	ND	Analytical Method: 555	
	1.2.3-TRICHLOROBENZENE	ND	BROMOCHLOROMETHANE	ND	METHYLENE CHLORIDE		2,23,34,58,6'OCTACHLOROBI	ND		ND	METOLACHILOR METRIBLIZIN		2.4-0	ND
	1.2.3-TRICHLOROPROPANE	ND	BROMODICHLOROMETHANE	ND	N-BUTYLBENZENE	ND	PH 2.74.//-	ND	BIS(2-ETHYLHEXYL) PHTHALATE	ND		ND	ACIFLUORFEN	ND
	1,2,4-TRICHLOROBENZENE	ND	BROMOFORM	ND	N-PROPYLBENZENE	ND	TETRACHLOROBIPHENYL	NU	BUTACHLOR	ND	NAPHTHALENE	HE	DICAMBA	ND
	1,2,4-TRIMETHYLBENZENE	ND	BROMOMETHANE	ND	NAPHTHALENE	ND	2.24,45,6'HEXACHLOROBIPHE NYL	ND	CHRYSENE	ND	PENTACHLOROPHENOL	ND	DINOSER	ND ND
	1.2-DIBROMO-3-	ND	CARBON DISULFIDE	ND	O-XYLENE	ND	2,3-DICHLOROBIPHENYL	ND	DI(2-ETHYLHEXYL)ADIPATE	ND	PHENANTHRENE	NE		
	CHLOROPROPANE 1.2-DIBROMOETHANE(EDB)	ND	CARBON TETRACHLORIDE	ND	P-ISOPROPYLTOLUENE	ND	2,4,5-TRICHLOROBIPHENYL	ND	DI-N-BUTYL PHTHALATE	ND	PROPACHLOR	No.	PICLORAM	ND
	1.2-DICHLOROBENZENE	ND	CHLOROBENZENE	ND	SEC-BUTYLBENZENE	ND	2-CHLOROBIPHENYL	ND	DIBENZ(A.H)ANTHRACENE	ND	PYRENE	ND	SILVEX	ND
	12-DICHLOROETHANE	ND	CHLOROETHANE	ND	STYRENE	ND	2-METHYLNAPHTHALENE	ND	DIELDRIN	ND	SIMAZINE	ND	Analytical Bothed: LACHA	T 10-109-12-2-A
		ND				-							FLUORIDE	ND
ı.														

Pease Tradeport Water System PFC Contamination

- April 2014 NHDES contacts City of Portsmouth to sample the three Pease Tradeport water system wells for PFAS due to detections at former Fire Training Center and past use of AFFF
- May 12, 2014 City staff are notified that PFAS levels in Haven Well exceeded the EPA's Health Advisory Standard for PFOS of 200 Parts-Per-Trillion (ppt)
 - Haven PFOS level = 2,500 ppt
- May 12, 2014
 - Haven Well is shut down
 - Smith and Harrison wells remain in service with lower detectable levels of PFAS
 - All other Portsmouth Sources are sampled and test "Non Detect"

2015

2016

2019

2020

2022

2023

NH Department of Health and Human Services 129 Pleasant Street - Hugh Gallen State Office Park Concord, NH 03301

NH Department of Environmental Services 29 Hazen Drive Concord, NH 03301

PRESS RELEASE FOR IMMEDIATE RELEASE May 22, 2014

CONTACT **DHHS Public Information Office** 603-271-9388 Twitter: NHDHHSPIO Facebook: NHDepartmentOfHealthAndHumanServices

> **DES Public Information Office** 603-271-3710

Unregulated Contaminant Found in Pease Tradeport Water System

Concord, NH - The New Hampshire Department of Health and Human Services (DHHS), Division of Public Health Services, and the New Hampshire Department of Environmental Services (DES) are today announcing a positive test result for perfluorooctane sulfonic acid (PFOS) from a well that serves the Pease Tradeport and the New Hampshire Air National Guard base at Pease. PFOS is one of a class of chemicals known as PFCs or perfluorochemicals. Because the level of PFOS exceeds the "provisional health advisory" set by the U.S. Environmental Protection Agency (EPA), the well was immediately shut down by the City of Portsmouth.

PUBLIC WORKS DEPARTMENT

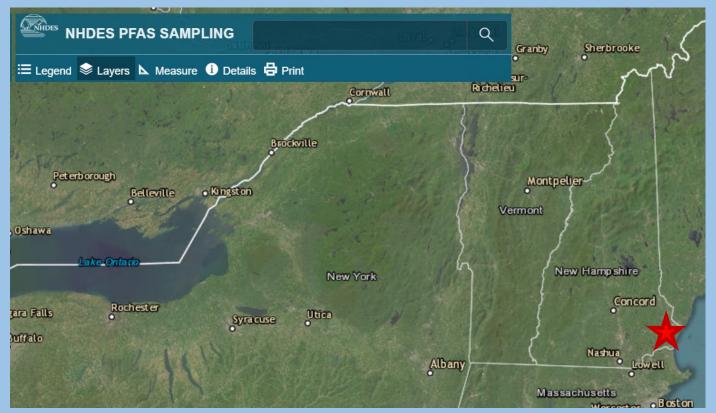
CITY OF PORTSMOUTH 680 Peverly Hill Road Portsmouth N.H. 03801 (603) 427-1530 FAX (603) 427-1539

May 22, 2014

The Pease International Tradeport Water System and Wells

On Monday May 12, 2014, City of Portsmouth staff were notified by the New Hampshire Department of Environmental Services (NHDES) that water sampling results for the Haven Well showed that perfluorooctanesulfonic acid, an unregulated contaminant, exceeded the provisional health advisory levels recommended by the Environmental Protection Agency. The Smith and Harrison wells also had levels of this unregulated contaminant in their water but they were well below the advisory levels. As a precautionary measure, the City took the Haven Well immediately off line as recommended by NHDES Drinking Water and Groundwater Bureau.

May 22, 2014....


What Caused the Contamination? Aqueous Film-Forming Foam (AFFF)


May 2014 - What Did We Know?

- Referred to as "PFCs" not yet "PFAS"
- Health concerns at Parts per Trillion
- It Bio-accumulates
- Not just one compound... Many variants

New Hampshire Sites with PFAS May 2014

May 28, 2014: State, Health and Water System Officials Hold First Public Meeting

Pease Tradeport PFAS Investigation Begins

Technical Team

- Air Force Civil Engineering
- Air Force Engineering Consultants
- EPA Region 1
- NHDES Waste Division
- NHDES Drinking Water and Groundwater Program
- Pease Development Authority
- City of Portsmouth Staff and Consultants



Co-operative Partnerships with Air Force

- ENVIRONMENTAL SERVICES COOPERATIVE AGREEMENTS
 - Well Replacement Study
 - Treatment Feasibility Study
 - Treatment Pilot Studies
 - Treatment Design
 - Treatment Construction
 - Additional Operations Expense

08.26.15 Community Advisory Board Ha...

2014 2015 2019 2023

Public Outreach:

Meetings, Website, Press Releases

Portsmouth City Council Briefing by Brian Goetz, Deputy Director of Public Works

NH Department of Health and Human Services 129 Pleasant Street - Hugh Gallen State Office Park Concord, NH 03301

NH Department of Environmental Services 29 Hazen Drive Concord, NH 03301

PRESS RELEASE FOR IMMEDIATE RELEASE May 22, 2014

603-271-9388 Twitter: NHDHHSPIO Facebook: NHDepartmentOfHealthAndHumanServices

DES Public Information Office

DHHS Public Information Office

CONTACT

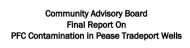
Unregulated Contaminant Found in Pease Tradeport Water System

Concord, NH - The New Hampshire Department of Health and Human Services (DHHS), Division of Public Health Services, and the New Hampshire Department of Environmental Services (DES) are today announcing a positive test result for perfluorooctane sulfonic acid (PFOS) from a well that serves the Pease Tradeport and the New Hampshire Air National Guard base at Pease. PFOS is one of a class of chemicals known as PFCs or perfluorochemicals. Because the level of PFOS exceeds the "provisional health advisory" set by the U.S. Environmental Protection Agency (EPA), the well was immediately shut down by the City of

August 13, 2014

Pease International Tradeport Water System Update

The City of Portsmouth's Water Division has been actively working with the United States Air Force (Air Force), the United States Environmental Protection Agency (EPA), and the New Hampshire Department of Environmental Services (DES) in response to the detection of elevated levels of the unregulated contaminant perfluorooctane sulfonic acid (PFOS) from the Haven Well, one of three wells that serves the Pease International Tradeport and the New Hampshire Air National Guard base at Pease. PFOS is one of a class of chemicals known as PFCs or perfluorochemicals. Because the level of PFOS exceeded the "provisional health advisory" set by the EPA, the well was shut down by the City of Portsmouth on May 12, 2014 and since that time it has been physically disconnected from the system. A number of actions have been taken by the project team. They include the following:


Water System Operations

The Pease Water System water demands are currently being met by supply from the other two Pease wells, the Harrison and Smith wells, supplemented by water boosted from the City of Portsmouth pressure zone. Overall water system demands for the combined Pease/Portsmouth water system have been met by the combined resources of the system's surface water supply and eight other wells. Water demands were very high early in the month when the weather was hot and dry and customers were irrigating. They have gone down since that time. System operators continue to track water system demands on a daily basis to assure that our supply meets demand. The following graphic provides a summary of the July 2014 water system pumpage.

www.cityofportsmouth.com/publicworks/water

Community Advisory Board Forms Holds 14 Meetings in 2015

Members

Chairman Rich DiPentima
Councilor Stefany Shaheen
Shelley Vetter, Owner and Director Discovery Child Enrichment Center
Newington Health Officer John Stowell
Portsmouth Health Officer Kim McNamara
Deputy Fire Chief James Heinz
Andrea Amico, Citizen and Parent

Mayor Robert Lister, Ex-officio Deputy City Manager David Allen, Ex-officio Deputy Public Works Director Brian Goetz, Ex-officio

EPA Order to Treat Haven Well Water July 2015

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY REGION I

In the Matter of:


United States Air Force.

Respondent.

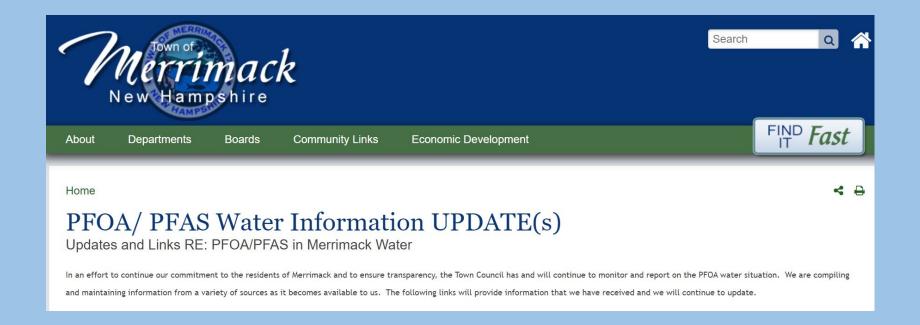
Former Pease Air Force Base,

The "Facility"

Proceeding Under Section 1431(a) of the Safe Drinking Water Act, 42 U.S.C. § 300i(a) Docket No.: SDWA-01-2015-0061

High levels of contaminant found last year

Published 6:10 PM EDT Jul 10, 2015

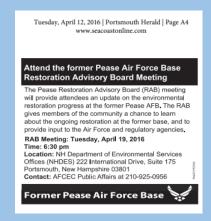


- Required Treatment System for Haven Well
- City and Air Force Subsequently met with Senator Shaheen and City proposed treatment for all three Pease Wells
 - Air Force agreed to system that would also treat Harrison and Smith Wells
- City signed agreement with Air Force to design and construct the system

EPA Order Included Two Other Treatment Systems:

March 2016 PFOA Detected in Merrimack, NH

Local and Federal Legislative Delegation

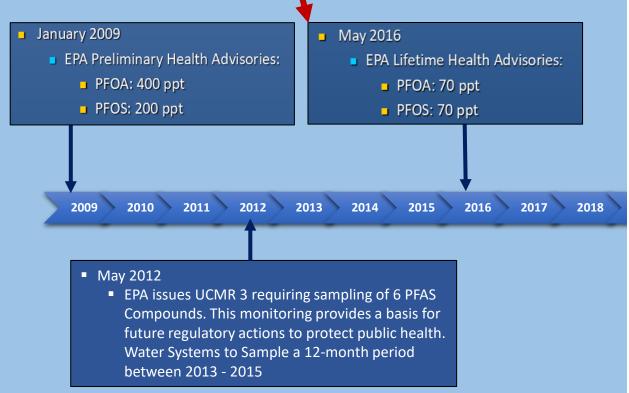


2016 – Governor (now Senator) Hassan meets with Testing for Pease representatives

Advocates for response to PFAS contamination, blood testing/health studies

Pease Restoration Advisory Board (RAB) Reinstated

RAB Members – March 2016


GAC Piloting Begins on Harrison and Smith Wells: April 2016

Purpose – monitor GAC effects on pH

Potential issues with orthophosphate effectiveness

Updated Lifetime Health Advisories

FACT SHEET
PFOA & PFOS Drinking Water
Health Advisories

erview

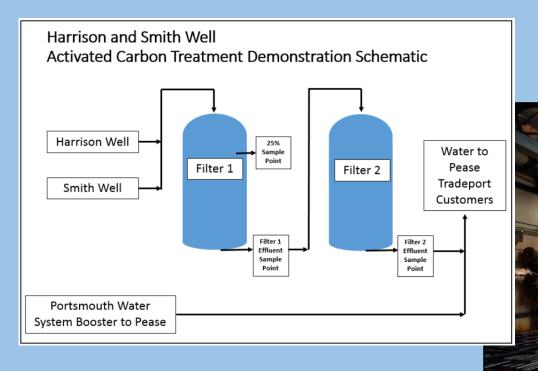
EPA has established health advisories for PFOA and PFOS based on the agency's assessment of the latest peer-reviewed science to provide drinking water system operators, and state, tribal and local officials who have the primary responsibility for overseeing these systems, with information on the health risks of these chemicals, so they can take the appropriate actions to protect their residents. EPA is committed to supporting states and public water systems as they determine the appropriate steps to reduce exposure to PFOA and PFOS in drinking water. As science on health effects of these chemicals evolves, EPA will continue to evaluate new evidence.

Background on PFOA and PFOS

PFOA and PFOS are fluorinated organic chemicals that are part of a larger group of chemicals referred to as perfluoroalky! substances (PFASs). PFOA and PFOS have been the most extensively produced and studied of these chemicals. They have been used to make carpets, clothing, fabrics for furniture, paper packaging for food and other materials (e.g., cookware) that are resistant to water, grease or stains. They are also used for firefighting at airfields and in a number of industrial processes.

Because these chemicals have been used in an array of consumer products, most people have been exposed to them. Between 2000 and 2002, PFOS was voluntarily phased out of production in the U.S. by its primary manufacturer. In 2006, eight major companies voluntarily agreed to phase out their global production of PFOA and PFOA-related chemicals, although there are a limited number of ongoing uses. Scientists have found PFOA and PFOS in the blood of nearly all the people they tested, but these studies show that the levels of PFOA and PFOS in blood have been decreasing. While consumer products and food are a large source of exposure to these chemicals for most people, drinking water can be an additional source in the small percentage of communities where these chemicals have contaminated water supplies. Such contamination is typically localized and associated with a specific facility, for example, an industrial facility where these chemicals were produced or used to manufacture other products or an airfield at which they were used for firefielbtine.

EPA's 2016 Lifetime Health Advisories


EPA develops health advisories to provide information on contaminants that can cause human health effects and are known or anticipated to occur in drinking water. EPA's health advisories are non-enforceable and non-regulatory and provide technical information to states agencies and other public health officials on health effects, analytical methodologies, and treatment technologies associated with drinking water contamination. In 2009, EPA published provisional health advisories for PPOA and PPOS based on the evidence available at that time. The science has evolved since then and EPA is now replacing the 2009 provisional advisories with new, lifetime health advisories.

Demonstration Filters

- Fall 2016 Installed full size temporary GAC filtration
- Flow rate 400 GPM
- Test GAC effectiveness on Pease (Harrison and Smith) water

Demonstration Filter Schematic

Treatment Design Options

- Activated Carbon

 Filtration is most
 widely accepted for
 drinking water
 applications
- Membrane Filtration
- Anion Exchange
- Advanced Oxidation

Oakdale, Minnesota Activated Carbon

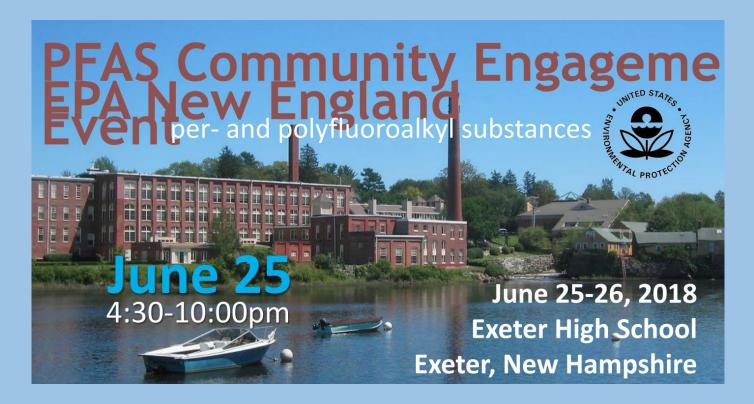
Newcastle, Delaware
Activated Carbon

Haven Well Pilot Test – Resin Filters

(November 2017 – December 2018)

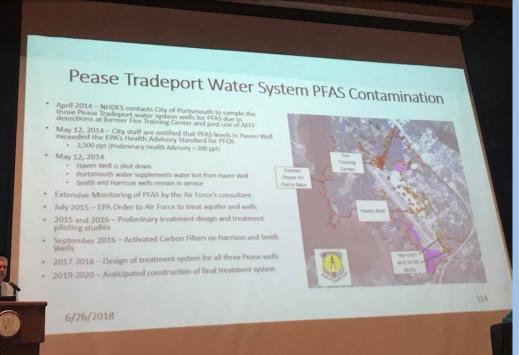
- Approached by ECT2 about potential to utilize resin treatment
- Begin piloting to compare the ability of media to remove PFAS from the Haven Well
 - 1. IX Resin = ECT2's SORBIX LC1
 - 2. GAC = Calgon's F400

March 2018 – Continued Updates to City Council



PFAS Update
Supporting Information
City of Portsmouth

Portsmouth City Council Packet March 5, 2018


EPA Begins Community Engagement Outreach

PFAS Community Engagement Event with the EPA: Day 2 Part 2

Brian Goetz Pease Tradeport PFAS History

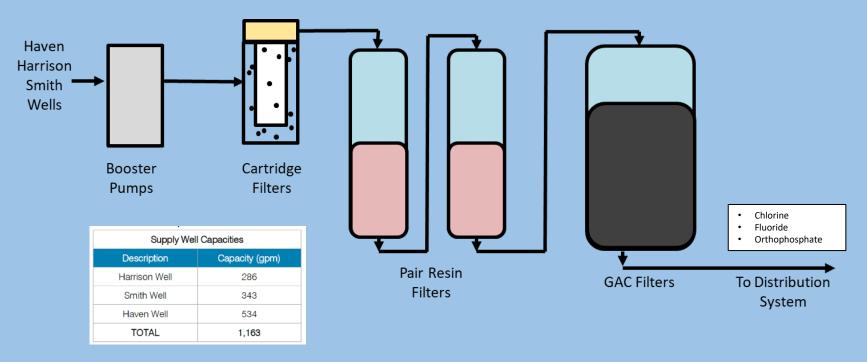
September 2018 Resin Piloting Results

- Resin significantly outperforms GAC when raw water PFAS concentrations are high
- As regulations move PFAS limits lower, the advantages of resin over GAC goes up
- Recommend treatment system with resin followed by GAC filters

September 2018

Portsmouth

Haven Well Pilot Testing Program



Final Treatment Facility Design

- City Water Staff
- Weston & Sampson

Pease WTF Process Schematic New Treatment System

Final Proposed Treatment Layout

January 2019 Invitation to Bid

INVITATION TO BID GRAFTON ROAD

DRINKING WATER TREATMENT PLANT UPGRADE CITY OF PORTSMOUTH NEW HAMPSHIRE

OWNER: The City of Portsmouth, New Hampshire seeks sealed Bids for the construction of upgrades at the Graffon Road Drinking Water Treatment Plant. The work will consist of the renovations and additions of new treatment process to treat drinking water supplied to the Pease International Tradeport for Perfluorooctanoic acid (PFOA) and Perfluorooctanesulfonic acid (PFOS). The scope of work includes partial demolition of the existing +/- 4,000 square foot building to increase the overall size and height of the facility, including the additions of approximately 3,900 square feot of building area.

BID OPENING: Sealed Bids will be received until 2:00 P.M. Local Time on January 8, 2019 in the office of the Finance/Purchasing Department, City Hall, 1 Junkins Avenue, Portsmouth, NH 03801. After the official Bid closing time, the Bids will be publicly opened and read aloud.

BIDDING DOCUMENTS: Contract Documents may be viewed and downloaded as a Portable Document Format (PDF) file free of charge at waw accentible prints com. Copies may be obtained by completing an order online or by calling 978-362-8038 with payment of printing fee for each set. Copies may be shipped for an additional change. All payments for printing and shipping are nonrefundable. Completed orders may be picked up at the offices of Accent Printing located at 99 Chelmsford Road, North Billeries, MA 01862 (978-362-8038), from 9 a.m. to 4 p.m. Copies may also be shipped to prospective bidders for an additional charge to cover handling and mailing fees. Any questions regarding bidding should be directed to the Purchasing Department at 603-610-7227. Any technical questions should be directed to Weston & Sampson's Project Manager, Margaret A. McCarthy, P.E. in writing at tracentrylm@wseinc.com.

PRE-BID CONFERENCE: A mandatory pre-bid conference will be held on December 5, 2018 at 1:00 P.M. at the Portsmouth Department of Public Works, First Floor, 680 Peverly Hill Road, Portsmouth, NH 03801, to familiarize Bidders with the Project. A site tour of the existing WTP will follow the conference.

BID SECURITY: Bid Security, certified treasurer's or cashier's check or bid bond, in the amount of 5 percent of the Bid shall accompany each Bid in accordance with the Instructions to Bidders.

CONTRACT SECURITY: The Bidder to whom a Contract is awarded shall furnish a Performance Bond and a Payment Bond each in amount equal to the Contract Price.

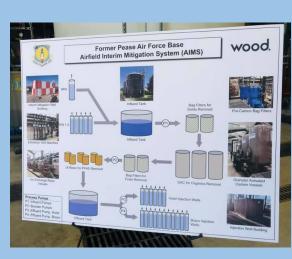
RESERVATION OF RIGHTS: OWNER reserves the right to reject any and all Bids, waive informalities in bidding or to accept the Bid or Bids, should the OWNER deem it in the Public interest to do so.

BID WITHDRAWAL: No Bid shall be withdrawn for a period of 90 days after the opening of Bids without consent of OWNER.

TIME FOR COMPLETION: The Work shall be completed within 670 calendar days from the date when the Contract Times commence to run. There are several Interim Milestones in addition to the time for Final Completion.

END OF SECTION

April 2019 - Start of Construction Kinsmen Corporation


June 2019 – GAC Building Foundation

Air Force Interim Mitigation System Treatment Completed

Sharing Lessons Learned:

New Hampshire Water Works Association's Construction Field Day – Aug 2019

October 2019 – New GAC Filter Installation

March 2020 GAC Building:

June 2020 - Demolition of Existing Building

July 2020 – NH Governor Signs PFAS MCLs into Law

In July 2020, New Hampshire House Bill 1264 was signed into law establishing the following MCLs:

Per- and polyfluoroalkyl substances (PFAS)	Maximum Contaminant Level nanograms/liter (parts per trillion or ppt)			
Perfluorooctanoic acid (PFOA)	12			
Perfluorooctane sulfonic acid (PFOS)	15			
Perfluorohexane sulfonic acid (PFHxS)	18			
Perfluorononanoic acid (PFNA)	11			

October 2020 – Safe Water Advisory Group Forms Meets Quarterly

Safe Water Advisory Group (SWAG)

The Safe Water Advisory Group was created with the approval of City Council on October 5, 2020. Its mission is to review and communicate the latest science on the health and environmental effects of drinking water contaminants (with a heavy focus on PFAS), to monitor federal and state level legislative changes, and to anticipate policy changes that could impact the city of Portsmouth.

October 2020

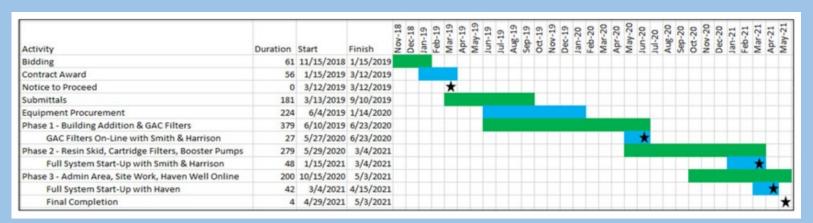
Filter Room – Resin and GAC Filters – March 2021

Approval of New Treatment System

- Resin filters tested with Harrison and Smith water
- Data analysis submitted to NHDES for approval of system operation
- April 9, 2021 approval received

Two Years of Construction

April 2019



On Time... and... On Budget

- \$10.8 Million Construction Kinsmen Corp
- \$2 Million Engineering, Studies, Design, Piloting, Construction Admin
- Reimbursed by Air Force through various ENVIRONMENTAL SERVICES COOPERATIVE AGREEMENTS

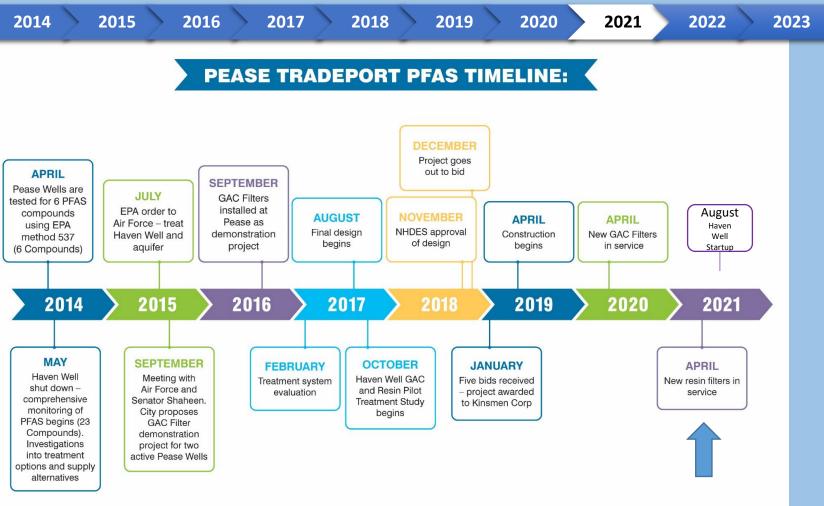
May 4, 2021 Dedication

City Officials, Congressional Delegation and Air Force Representatives

City Staff

Weston & Sampson Engineers

May 4, 2021 Dedication



Haven Well Startup – August 3, 2021

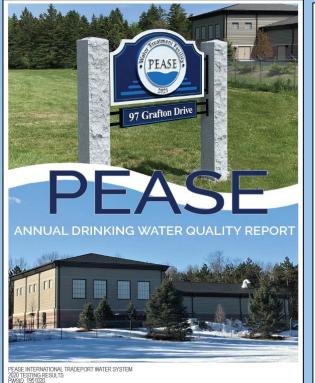
PEASE WATER TREATMENT FACILITY
PEAS RESULTS - POST TREATMENT

		GALLONS
SAMPLED	PFAS*	TREATED
4/27/2021	ND	2,717,039
5/4/2021	ND	4,354,049
5/11/2021	ND	6,387,665
5/12/2021	ND	6,830,373
5/18/2021	ND	9,391,617
6/15/2021	ND	23,133,046
7/19/2021	ND	41,445,555
8/4/2021	ND	52,901,428
8/5/2021	ND	53,782,078
8/11/2021	ND	58,558,918
8/18/2021	ND	64,975,798
8/25/2021	ND	69,830,038
9/15/2021	ND	86,914,498
10/13/2021	ND	106,446,219
11/17/2021	ND	123,708,814
12/14/2021	ND	135,102,720
1/12/2022	ND	145,754,577
2/10/2022	ND	160,343,640
2/16/2022	ND	163,485,793
3/16/2022	ND	177,308,269
4/13/2022	ND	191,791,889
5/17/2022	ND	210,179,427
6/16/2022	ND	231,225,649
7/18/2022	ND	260,357,668
8/16/2022	ND	291,147,037
9/20/2022	ND	318,884,325
10/19/2022	ND	335,729,329
11/16/2022	ND	349,323,603
12/14/2022	ND	362,626,827
2/6/2023	ND	388,305,448
3/17/2023	ND	405,866,564
4/17/2023	ND	421,965,419
5/18/2023	ND	439,080,277
6/13/2023	ND	459,095,921
7/19/2023	ND	483,871,264
8/18/2023	ND	506,897,443
9/18/2023	ND	529,683,296
10/16/2023	ND	548,525,684
11/20/2023	ND	568,411,143
12/13/2023	ND	580,595,324
1/17/2024	ND	598,451,012
2/16/2024	ND	613,409,008
3/19/2024	ND	629,203,957

^{*} NH Regulated PFAS (PFOA, PFOS, PFHxS & PFNA)

ND = None Detected at Method Reportable Limit (2 ppt)

Pease Water PFAS Treatment System Performance


Updated Health Advisories

Forensics and Monitoring Continues...

Outreach Continues...

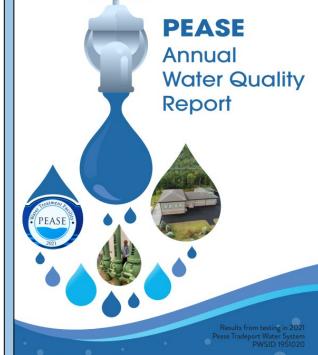
2021 WATER QUALITY RESULTS

Per- and Polyfluoroalkyl Substances (PFAS)

On September 30, 2019 the NHOES established limits on the concentrations of four per- and polyfluoroalkyl substances (PFAS) in drinking water. The NHOES maximum contaminant level (MCL) for drinking water and gourdwater is 15 parts per tillion (ppt) for perfunoroaction acid (PFOA), if ppt for perfunoroaction acid (PFOA), and is ppt for Perfunoronamentic Acid (PFNA), and is ppt for Perfunoroaction acid (PFNAS). These limits are based on an annual rolling average of the sample results. The EPA Health Advisory concentration has reminised and Type (pf) for PFOA (price 2016).

Over the past eight years, the Harrison Well and Smith Well in the Pease Tradeport water system, and Portsmouth Well if and Collins Well in the Portsmouth water system, have been routinely monitored for PFRS by the Air Force. Since the activation of the Haven Well, it has been sampled monthly. The City of Portsmouth has sampled all of the Portsmouth water supply sources at least twice per year, and since October 2015 is sampling quantity. 2021 sample results are summarized in the PFAS table below.

All monitoring data is available online: cityofportsmouth.com/publicworks/water/pease-tradeport-water-system. For more online information about PFAS health effects: atsdr.cdc.gov/sites/pease/index.html.


				SMOUTH TO PEASE		PEASE TRADEPORT TREATED WELL WATER	TABLE ABBREVIATIONS & NOTES:		
(concentrations* reported in right or ppt) CONTAN		NHDES MAXIMUM CONTAMINANT LEVEL (MCL)		MELL AT MELL AT MENS WELL		SUPPLED PTERGAC REATMENT	Due to laboratory analytical method limitations, low concentrations reported for these chemicals are considered estimates unless the amount measured is above 2 mg/L (ppt).		
		, E	8	°		EPA Health Advisory Level for PFOS and PFOA concentration separately or combined is 70 ng/L.			
# of samples in 2021			13	13	4	13	(pot). Averages are calculated using half of the		
% of water supplied in 2021			8.2%	2.9%	11.6%	77.3%	method detection limit for samples that were less		
6:2 Fluorotelomer Sulfonate (6:2 FTS)	not regulated	Average	BD	BD	ND	ND	than detection, per EPA risk assessment protocols.		
		Range	ND-1	ND-3	ND	ND	ND (none detected): Indicates that the substance was		
	not	Average	3	16	3	ND	not found by laboratory analysis.		
Perfluorobutane-sulfonic acid (PFBS)	regulated	Range	2-4	12-21	3 - 4	ND	BD (below detected level): Average calculated		
Perfluorobutanoic acid (PFBA)	not	Average	3	5	2	2	resulted in value below the detection limit.		
	regulated	Range	2-4	3-7	2	ND - 13	PFAS analyzed but not detected in the samples: 8:2 Fluorotelomer sulfonate (8:2		
Perfouoroheptanoic acid (PFHpA)	not regulated	Average	3	- 1	2	ND	FTS): Perfluorohexanesulfonic acid (4:2 FTS):		
		Range	2-6	ND-2	2	ND	Perfluorodecanoic acid (PFDA); Perfluorododecanoic acid (PFDA); Perfluorohectanesulfonic acid		
Perfluorohexane-sulfonic acid (PFHxS)		Average	7	2	2	ND	acid (PF DoAg, Perfluoroneptanesulfonic acid (PFHpS): Perfluoroundecanoic acid (PFUnA):		
	18	Range	6-9	2-3	2-3	ND	Perfluoro-3-Methasypropanoic Acid (PFMPA);		
	not regulated	Average	5	2	4	ND	Perfluoro 4-Methasybutanoic Acid (PFMBA); Perfluoro(2-Ethaswithane(5uffanic Acid		
Perfluorohexanoic acid (PFHxA)		Range	3-7	1-3	4-5	ND	(PFEESA): Nonafluoro-3,6-Dioxaheptanoic Acid		
Perfluorononanoic acid (PRNA)	-11	Average	BD	BD	ND	ND	(NFDHA); Perfluoropentanesufforic Acid (PFPeS); 2.3.3.3-Tetrafluoro-2-f1.1.2.2.3.3.3-		
		Range	ND-1	ND-1	ND	ND	Heptafluoropropoxy)-Propanoic Acid (HFPO-DA);		
Perfluorooctane-sulfonic acid (PFOS)	15	Average	5	4	5	ND	4,8-Dioxa-3h-Perfluorononanoir: Acid (ADONA); 9-Chinrohevaderafluoro-3-Ovarrona-3-Suffinir Acid		
		Range	3-6	3-5	4-6	ND	(9CI-PF3ONS); and 11-Chloroeicosafluoro-3-		
Perfluorooctanoic acid (PFOA)	12	Average	5	3	4	ND	Oxaundecane-1-Sulfonic Acid (1101-PF30UdS)		
Permuorooctanoic acio (PPCIA)	12	Range	4-7	2-6	4.5	ND			
Perfluoropentanoic acid (PFPeA)	not	Average	6	3	4	2			
Pertiuoropentanoic acid (PPPA)	regulated								

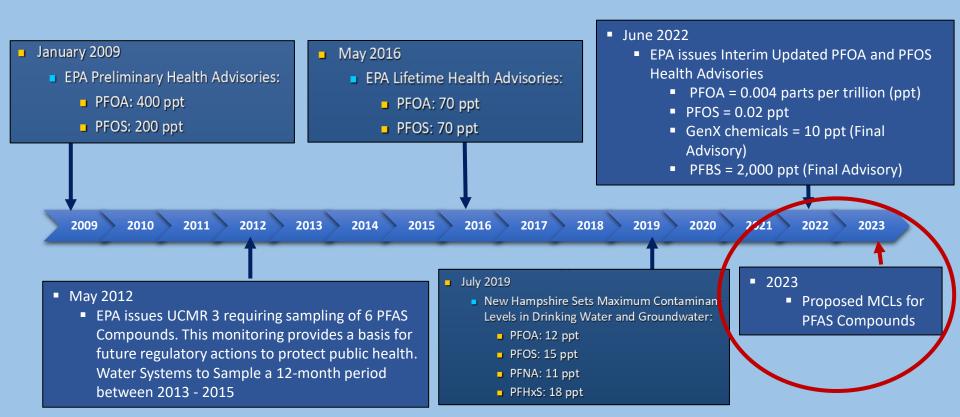
Source Water Assessment

Potsmouth Water Division routinely updates inventories of potential contaminant threat and is actively pursuing opportunities to increase the protection of our groundwater supplies and the Bellamy Reservoir through properly and easement expoints on. NHDES prespired divisiting water source assessment reports for all public water systems between 2000 and 2001 an entert to cases the vulnerability of each of the State's public water supply sources. Included in the report is a contamination sources and a summany of evaluable protection options. Results of the assessment, prepared in 2002, are provided in the table. Results of the assessment, prepared in 2002, are provided in the table.

3						
2	Ξ		HIGH	MEDIUM	LOW	
Na Po	Greenland Well - GPW 003	4	3	5		
8	25	Portsmouth Well - GPW 004	5	4	3	
S AS	8	Collins Well - GPW 010	4	1	7	
WATI						
벌	Smith Well - GPW 001	4	3	5		
PEASE	Harrison Well - GPW 009	not rated				

contamination, are ranked and summarized in the summary of susceptibility ratings section in terms of the number of factors per risk category. The complete assessment report is available for review at the DPW office and online at the NHDES website.

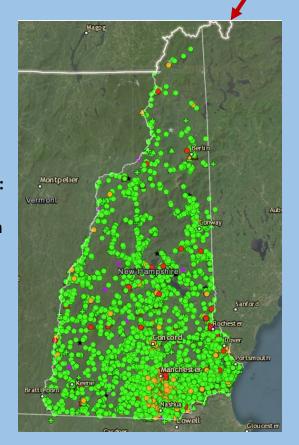
Treatment Piloting Continues...


 The City is currently tracking these developments and is developing conceptual plans for additional treatment if necessary to comply with any new regulatory standard.

Tim Green, Treatment Operations Foreman

Our PFAS treatment pilot system – comparing four different filtration technologies

Regulations Continue...


New Hampshire Sites with PFAS

NHDES Website - April 15, 2024:

To date, 12,288 wells have been sampled

3,369, or 27%, exceed the New Hampshire MCLs for PFOA and/or PFOS

